Local sharp maximal functions, geometrical maximal functions and rough maximal functions on local Morrey spaces with variable exponents

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Rearrangement Inequalities for Local Sharp Maximal Functions

Several weighted rearrangement inequalities for uncentered and centered local sharp functions are proved. These results are applied to obtain new weighted weak-type and strong-type estimates for singular integrals. A self-improving property of sharp function inequalities is established.

متن کامل

Rearrangements and the Local Integrablility of Maximal Functions

Let MHL and MS respectively denote the Hardy–Littlewood and strong maximal operators, and let Mx and My respectively denote the one-dimensional Hardy–Littlewood maximal operators in the horizontal and vertical directions in R. It is well known that if f and f̃ are equidistributed functions supported on Q = [0, 1] × [0, 1], then ∫ Q MHLf ∼ ∫ Q MHLf̃ . This article examines the relationships betwee...

متن کامل

Growth of maximal functions

Abstract. We consider the integrability of φ(f∗) for various maximal functions f∗ and various increasing functions φ. We show that for some of the standard maximal functions arising in harmonic analysis and ergodic theory, there is never integrability of φ(f∗) for all Lebesgue integrable functions f except in cases where the growth of φ is slow enough so that the integrability follows from the ...

متن کامل

The Bilinear Maximal Functions

The bilinear maximal operator defined below maps L × L into L provided 1 < p, q <∞, 1/p+ 1/q = 1/r and 2/3 < r ≤ 1. Mfg(x) = sup t>0 1 2t ∫ t −t |f(x+ y)g(x− y)| dy In particular Mfg is integrable if f and, g are square integrable, answering a conjecture posed by Alberto Calderón. 1 Principal Results In 1964 Alberto Calderón defined a family of maximal operators by Mfg(x) = sup t>0 1 2t ∫ t −t ...

متن کامل

Sharp Inequalities for Maximal Functions Associated with General Measures

Sharp weak type (1, 1) and L p estimates in dimension one are obtained for uncentered maximal functions associated with Borel measures which do not necessarily satisfy a doubling condition. In higher dimensions uncentered maximal functions fail to satisfy such estimates. Analogous results for centered maximal functions are given in all dimensions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2020

ISSN: 1331-4343

DOI: 10.7153/mia-2020-23-108